

Developing A Dairy Gaseous Emission Model

Ruihong Zhang, Professor Biological and Agricultural Engineering Dept. University of California, Davis

Gases from Manure Sources

Gas emission involves two processes

- Generation by biochemical and chemical reactions
- Mass transfer at the surface

Gases

- -Volatile organic compounds (VOCs)
- -Methane (CH₄), Hydrogen sulfide (H₂S), ammonia (NH₃) and carbon dioxide (CO₂)

Dairy Emission Model

- Calculate the emission rates of gases (ammonia, VOCs, and hydrogen sulfide) on dairy farms under different animal feeding and manure management practices and environmental conditions.
- Determine key controlling factors for gaseous emissions and design effective emission mitigation techniques.

Dairy Emission Model

Developing a Process-Based VOC Emission Model (9/06-8/08)

- Research Sponsor
 - California Air Resource Board
- Researchers
 - UC Davis Ruihong Zhang, Frank Mitloehner
 - UC Berkley Allen Goldstein

Research Objectives

- Quantify the generation and emission rates of VOCs, NH₃ and H₂S from silage (fermented animal feed) and manure under different management and environmental conditions.
- Develop a process-based computer model that can predict the emission rates of VOCs from different dairy feed silage and manure storage sources.

Emission Model Validation

- Controlled conditions
 - Use environmental chamber and biobubble measurement data
- Variable farm conditions
 - Use available farm emission data

Ammonia Emission Modeling Research

- Ammonia Emission Model for Animal Feeding Operations
 - Lake Michigan Air Directors Consortium (LADCo) (2004-2005)
 - USDA National Research Initiative (2006-2008)

Researchers Involved

- UC Davis
 - Ruihong Zhang, James Fadel, Tom Rumsey
- UC Riverside
 - Zion Wang
- Iowa State University
 - Hongwei Xin
- Virginia Polytech State University
 - Jactone Arogo
- Purdue University
 - Albert Heber

Status of Ammonia Emission Model

- Developed but need improvement and validation
 - Animal nitrogen and manure excretion
 - Animal housing
 - Lagoons
 - Land application
- To be developed and validated
 - Feedlot
 - Dry manure storage

Example- Ammonia Emission Model for Manure Storage Lagoon

- Calculates ammonia emission rate as a function of
 - Organic nitrogen mineralization rate
 - Ammonia transfer rate from manure into the air
- Considers the rain fall and evaporation

Input Parameters for Manure Lagoon Model

- > Manure properties
 - > pH, ammonia concentration, mineralization rate
- > Storage structures
 - Configurations and dimensions
 - > Treatment lagoon vs. storage pond
 - > Storage period
- > Environmental conditions
 - > Air temperature, Air velocity
 - Precipitation and evaporation

Effect of Lagoon Configurations and Locations on Ammonia Emission Rate

Ammonia emission rate from a lagoon holding
9 million gallons of manure water with 450 mg/L
TAN (manure water from 1000 cows for 3 months at 100 gal/cow.day).

Variables analyzed

- PH = 7.0, 7.4, 7.8
- Depth = 10, 25 ft
- Locations Fresno and San Joaquin

Ammonia Emission Rate for the Lagoon in Fresno

Lagoon Conditions		NH ₃ -N Emission (lb cow ⁻¹ yr ⁻¹)
Depth (ft)	pН	
25	7.0	9.7
	7.4	24.4
	7.8	60.1
10	7.0	16.7
	7.4	41.9
	7.8	103.1

N excretion from a cow = 369 lb/year

Predicted NH₃ Emissions from Dairy Lagoons of Different Depths (pH = 7.4, TAN = 450 mg/L, Fresno)

Predicted NH₃ Emissions from Dairy Lagoon at Different pH (H=25ft, TAN=450mg/L, Fresno)

Predicted NH₃ Emissions from Dairy Lagoons at Different Locations

Summary

Farm Emission Model is under development and will be a scientific tool for estimating gaseous emissions from dairies under different conditions and determine the critical factors that affect the emissions.